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Abstract
We have studied statistical properties of the values of the Wigner function
W(x) of 1D quantum maps on compact 2D phase space of finite area V .
For this purpose we have defined a Wigner function probability distribution
P(w) = (1/V )

∫
δ(w − W(x)) dx, which has, by definition, fixed first and

second moments. In particular, we concentrate on relaxation of time-evolving
quantum states in terms of W(x), starting from a coherent state. We have shown
that for a classically chaotic quantum counterpart the distribution P(w) in the
semiclassical limit becomes a Gaussian distribution that is fully determined by
the first two moments. Numerical simulations have been performed for the
quantum sawtooth map and the quantized kicked top. In a quantum system
with Hilbert space dimension N(∼1/h̄) the transition of P(w) to a Gaussian
distribution was observed at times t ∝ log N . In addition, it has been shown that
the statistics of Wigner functions of propagator eigenstates is Gaussian as well
in the classically fully chaotic regime. We have also studied the structure of the
nodal cells of the Wigner function, in particular the distribution of intersection
points between the zero manifold and arbitrary straight lines.

PACS numbers: 03.65.Yz, 03.65.Sq, 05.45.Mt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Wigner function (WF) [1] is an essential concept of the phase-space representation of
quantum mechanics, namely it is a useful and faithful representation of a pure or mixed
quantum state in terms of functions of canonical classical phase-space variables. It has many
applications in various branches of physics, in particular in quantum optics. However, the WF
cannot be interpreted as a quantum phase-space distribution as it can develop negative values,
in particular due to the well-known oscillatory interference fringes following, e.g., coherent
wave-packet superpositions.
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The WF also played an important role in the realm of quantum chaology [2, 3]. In
particular, it has been conjectured that the WF of stationary eigenstates of bounded dynamical
systems in quasi-classical regimes localizes onto classically invariant components of phase
space. For example, for classically regular phase-space regions, such as KAM tori, the WF is
supposed to become a Dirac delta function on a KAM torus whereas for a classically chaotic
component the WF is supposed to condense uniformly there. However, it is well known
that this asymptotic behaviour is to be understood in a very weak limit sense, i.e. the WF
is becoming uniform only after being integrated (with a very smooth test function) over a
non-small (or classical) region of phase space. On the other hand, on a smaller (quantum)
scale, e.g., of Planck cell size, the phase-space structure of the WF of typical, say random or
ergodic states, is very much unknown. This question is important for the understanding of
decoherence and quantum stability with respect to system perturbations as discussed recently
[4–7].

In this paper, we address the question of the structure of a typical WF from a statistical
point of view. We define and analyse the statistical distribution of values of the WF of a given
quantum state. In particular, we are interested in the relaxation of this distribution with time,
when we start from an initial coherent state, and in the corresponding time scale. Here we limit
ourselves to classically fully chaotic and discrete time systems, namely the chaotic quantum
maps, where the full phase space is the only topologically transitive ergodic component.

We show that for chaotic quantum maps, the limiting WF value distribution is a Gaussian.
The average value is fixed by normalization, while the second moment (or the variance)
diverges in the quasi-classical limit (h̄ → 0), so we have roughly a symmetric distribution
of positive and negative values of the WF for random states. In addition, we show that for
chaotic systems, the relaxation to equilibrium in statistics of the WF happens on a short log h̄

(Ehrenfest) time scale. Furthermore, we show for chaotic systems, that the statistics of the
WF of a typical chaotic eigenstates is the same as the WF statistics of a random state, which is
consistent with the established Berry’s conjecture [20]. Finally, we present statistical analysis
of the structure of nodal cells of the WF of chaotic or random states and show that it can be
described by simplified models based on random trigonometric functions.

In section 2, we outline the essentials of the general Wigner–Weyl formalism and discuss
two special cases of compact phase space, namely of toroidal and spherical phase space, which
are later used in numerical examples. In section 3 we discuss the WF value statistics of a
random (or quantum chaotic) state. In section 4 we discuss WF statistics on two numerical
examples of quantum chaos, and analyse, in particular, the relaxation of WF statistics in
quantum time evolution starting from an initial coherent state. In section 5 we go beyond
simple value statistics, and study also the phase-space structure statistics of the WF, such as
its spatial correlation function and distribution of diameters of its nodal cells, for example. In
section 6 we summarize our most important results and conclude.

2. Weyl–Wigner formalism and the Wigner function

Let us first review some of the essential general principles of the Weyl–Wigner (WW) phase-
space representation of operators (see, e.g., [8]). As we are aiming at compact (finite) phase
spaces of chaotic maps,our discussion of the WW formalism has to be a little bit abstract so as to
be able to incorporate the different topologies that are discussed later. We begin by considering
a phase space χ and a Hilbert space H, such that a typical function A(x), x ∈ χ , corresponds
under quantization to a linear operator Â over H. The inverse map Â → A(x) is called a
Weyl symbol, and if Â = |ψ〉〈ψ| then the corresponding symbol is called the WF. The
Weyl symbol can be formally constructed using a self-adjoint kernel operator ω̂(x) with
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the property

tr{ω̂(x)ω̂(y)} = δ(x − y) ω̂(x)† = ω̂(x) (1)

namely

A(x) = tr{ω̂(x)Â} (2)

which also generates the inverse map

Â =
∫

dV A(x)ω̂(x). (3)

For systems with classically compact (finite) phase space χ the corresponding Hilbert space is
finite, say N dimensional. As a consequence, the WW map (2) can be uniquely inverted only
if the phase space is restricted to a finite set of N2 points χ ′ = {xnk; n, k = 0, 1, . . . , N − 1}.
The kernel is in this case defined at discrete points only, ω̂nk = ω̂(xnk) with the property

tr{ω̂nkω̂ml} = δnmδkl (4)

so that the discrete WW map reads

Ank = tr{ω̂(xnk)Â} and Â =
∑
nk

Anω̂nk. (5)

The WF W(x) is defined as a phase-space representation of the density operator ρ̂ multiplied
by a certain suitable normalization constant C

W(x) = C tr{ω̂(x)ρ̂}. (6)

The constant C can be set for the convenience of a particular application, for example,
usually it is set by the normalization of probability,

∫
dxW(x) = 1. However, in this paper

we are interested in the fluctuation of the WF so we determine the constant C by fixing

the standard deviation σ 2 = W 2 − W
2 = 1, where (· · ·) denotes the average over phase

space. We note that the kernel ω̂ is far from being completely specified by the property
(1). In addition we need certain correspondence principles. For example, for the usual (non-
compact) symplectic geometry x = (q, p) in (d + d)-dimensional phase space the kernel
reads ω̂(q, p) = (2πh̄)−d/2

∫
dv eip·v/h̄|q + v/2〉〈q − v/2|. However, for compact geometries

the WW map may not be unique. In such cases one may decide on the most reasonable or the
simplest choice. In any case, as the effective value of Planck constant vanishes any consistent
choice should yield equivalent results in the semiclassical limit.

2.1. Wigner function on a 2D torus

Many simple phenomena in the theory of bounded Hamiltonian (symplectic) dynamical
systems can be demonstrated on a 2D torus χ = T 2 = [0, 2π) × [0, 2π). However,
quantization of a torus is not trivial from a mathematical point of view. Hence there are
several different proposals for a WW formalism on a torus [15]. Here we are following
[11] up to convenient scaling factors. Let the Hilbert space H have dimension N, and the
canonical bases, namely the position basis |n〉, n = 0, . . . , N − 1, and the momentum basis
|k̃〉, k = 0, . . . , N − 1, satisfy 〈n|k̃〉 = N−1/2 exp(−2π ink/N). The quantum phase space in
our formalism is a discrete mesh of N ×N points, xnk = (2πn/N, 2πk/N). The WF function
on such a discrete phase space in the limit of N → ∞ mimics the continuous Wigner function
[1]. For technical reasons we assume that N is odd. The WW kernel in this formalism is
defined as

ω̂nk = 1√
N

∑
n′l

exp(−2π in′k/N)δ̃(2l − 2n + n′)|l〉〈l + n′|
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where all indices run from −(N − 1)/2 to (N − 1)/2, which will be assumed whenever we
refer to the quantized torus. For a pure quantum state ψ the WF is given by

Wψ(n, k) = Ct tr{ω̂nkρ̂} Ct =
√

N3

N − 1

= N√
N − 1

∑
n′,l

exp[−2π in′k/N]δ̃(2l − 2n + n′)〈l + n′|ψ〉〈ψ|l〉 (7)

where we define a fat Dirac delta function δ̃(l) as

δ̃(l) = 1

N

∑
m′

exp(π im′l/N) = 1

N

sin(πl/2)

sin(πl/2N)
.

2.2. Wigner function on a sphere

As a second important special case we consider the quantum mechanics of a spin J variable
whose classical phase space can be identified with a unit sphere χ = S2 described by spherical
angles θ ∈ [0, π), ϕ ∈ [0, 2π). The WW formalism for SU(2) geometry was developed in
[14] with the kernel

ω̂(x) =
∑
kq

T̂kqY
∗
kq (x) x = (θ, ϕ)

where Ykq are standard spherical harmonics and T̂kq are multipole operators defined by

T̂kq =
J∑

m=−J

J∑
m′=−J

(−1)J−m
√

2k + 1

(
J k J

−m q m′

)
|Jm〉〈Jm′|.

Symbols
(

J k J

−m q m′
)

are standard Wigner 3j symbols [17]. Using the kernel one defines the
WF as [12]

W(x) = Cs tr{ω̂(x)ρ̂} = Cs

2J∑
k=0

q=k∑
q=−k

GkqYkq(x) Cs =
√

4π
2J + 1

2J
. (8)

The information about the quantum system state-density operator ρ̂ is hidden in the coefficients

Gkq = tr
{
ρ̂T̂

†
kq

}
.

We note that the SU(2) WF is defined continuously everywhere on a sphere. However, it is a
superposition of finitely many spherical functions with coefficients Gkq which correspond to
a discrete WF over a finite discrete mesh of points on some other compact geometries, such
as a torus.

3. Wigner function value statistics of a random state

Quantum states of classically chaotic systems are usually associated with the so-called ergodic
or random wavefunctions. These random states can be constructed using very simple
principles, such as Berry’s random plane wave superposition for billiards [20], or chaotic
analytic functions in the Bargman or Husimi representation of Hannay [9], see also [10].
In this paper we want to analyse the Wigner function of a random state and its statistical
properties. To the best of our knowledge this has not been attempted before.
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Starting from a fixed WF W(x) we define its value distribution P(w) as

P(w) = 1

V

∫
χ

δ(w − W(x)) dx. (9)

We assumed that phase space χ is compact and has finite volume V . The averages with respect
to the probability density P(w) will be denoted by (· · ·). The first moment of P(w) is fixed
by normalization of the Wigner function (given by constant C′). The second moment is also
fixed by the purity of the state which implies∫

dxW 2(x) = C ′
∫

dxW(x). (10)

Since in this paper we are interested in fluctuation of the WF it is convenient to determine the

scaling constant C′ (6) by setting the standard deviation to one, σ 2 = W 2 − W
2 = 1. This

implies for the average values (first moments), using equations (7), (8):

torus: W = 1√
N − 1

sphere: W = 1√
2j

. (11)

It may be instructive to define a relative standard deviation in units of the average WF
κ = σ/W . Then the above statement (11) says that the relative standard deviation κ → ∞ of
the WF distribution diverges in the semiclassical limit N → ∞ (or j → ∞).

We should note that the result on divergence of the relative standard deviation is general
and independent of the structure of the state. So, if we have a very non-uniform state, e.g., a
Gaussian wave packet, then the statement says merely that the standard deviation is very large
compared to the average value since we have almost all density concentrated around a small
region. However, if we have a random (ergodic) state, then the WF value distribution should
be transitionally invariant in phase space. Therefore, the values of the first two moments of
the global phase space WF value distribution should also determine the average and standard
deviation of the local distribution around each phase-space point. In order to determine the
entire WF value distribution we define an appropriate random WF model in a specific generic
geometry, namely on a 2D torus, although the result which will be obtained can be argued
to be universal and geometry independent. We start with a random state in N-dimensional
Hilbert space

|ψ〉 =
N∑

l=1

cl|l〉
N∑

l=1

|cl|2 = 1 (12)

where cl are random generally complex coefficients. It turns out (see, e.g., [19]) that for large
N, coefficients cl may be considered as independent complex Gaussian variables with variance
〈|cl|2〉 = 1/N (here and later 〈· · ·〉 denotes averaging over an ensemble of random states (12)).

Translational invariance of the WF value distribution implies that the distribution over
phase space can be replaced with the distribution over an ensemble of random states (12),
so we choose to study the distribution of WF at the most easily computable phase-space
point (0, 0)

W00 = N√
N − 1

|c0|2 +
∑
l� =l′

δ̃(l + l′)c∗
l cl′

 . (13)

In the leading order δ̃(l + l′) can be approximated by the Kronecker δl+l′ so expression (13)
is a sum of N independent terms, the first |c0|2 is strictly non-negative, while the others have
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vanishing mean and finite fluctuation. Hence, due to the central limit theorem, for large
N � 1, the distribution of W00 becomes Gaussian

P(w) = 1√
2π

exp

(
−1

2
(w − W)2

)
(14)

where the first and second moments can be computed directly by ensemble averaging giving
identical results to previous phase averaging (11), and σ 2 = 1.

4. Dynamics and relaxation of Wigner function value statistics

In this section we will consider dynamics, namely statistics of the WF of time-evolving
pure states. In particular, we shall focus on systems with ergodic, mixing, and fully chaotic
classical dynamics such that in the course of classical dynamics any non-singular initial
classical measure relaxes to a uniform (micro-canonical) measure. When turning to quantum
mechanics we pose a simple problem. Let us start with ‘the most classical’ initial state, namely
with the coherent state (e.g., Gaussian wave packet): First, how does the WF value distribution
of a time-evolving state relax into the Gaussian distribution (14) which characterizes the final
ergodic (random) state? Second, what is the characteristic time scale of this relaxation process
for a typical chaotic system and how does it scale with the value of an effective Planck
constant?

4.1. Toy models of quantum chaotic dynamics

In order to carry out the plan outlined above we need to define generic time evolution on the
Hilbert spaces of the quantized torus or the quantized sphere, respectively, which are chaotic
in the classical limit. This is not difficult as we simply consider popular models which have
been widely studied in the literature, namely the quantized sawtooth map on the torus [18],
and the quantized kicked top [19].

The quantized sawtooth map on the torus (the classical counterpart is defined on a torus
(q, p) ∈ [0, 2π] × [0, 2πL]) defined on the finite Hilbert space of dimension N with the
evolution operator

Ûs = exp

(
−i

T

2
m̂2

)
exp

(
i
K0T

2L2
n̂2

)
(15)

where K0 is the kicking strength, T = 2πL/N is the period of forcing and integer L (usually
set to 1) measures the vertical size of toroidal phase space. We have introduced formal position
and momentum operators with integer eigenvalues, namely n̂ and m̂ respectively, satisfying
n̂|n〉 = n|n〉, m̂|m〉 = m|m〉. We should note that the classical sawtooth map is ergodic and
uniformly hyperbolic for K0 > 0. As for the initial state we always choose a coherent state
(which can be expressed in terms of Jacobi theta functions for toroidal phase space [16])
centred somewhere on the torus.

As for the other system defined (classically) on a spherical phase space, the quantum
kicked top of spin J has a unitary map Ûk acting on a (2J + 1)-dimensional Hilbert space

Ûk = exp(−iγ Ĵ x) exp
(

iαĴ 2
z

/
2J

)
.

Here, parameter α is an angle of rotation in between the kicks and γ is the kicking strength. In
the paper we will consider the parameter values γ = π/2 and α = 3, or α = 10, corresponding
to classically mixed, or fully chaotic, phase space, respectively. Again, we prepare the system
initially in the SU(2) coherent state [13] placed somewhere on the sphere.
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For the purpose of illustration we first show the cascade of snapshots of WF starting from
the initial coherent state undergoing quantum dynamics with completely chaotic classical time
evolution. The results are shown in figure 1 for the quantized sawtooth map while similar-
looking cartoons were obtained for the kicked top. It is clear from the figure that after a
very short time (of the order of a few kicks) the Wigner function relaxes into a universal
looking distribution with a roughly symmetric distribution of positive and negative values.
We conjecture that this asymptotic distribution should be a Gaussian (14) as derived for a
random model. Furthermore, we conjecture that the time scale on which this relaxation takes
place is just of the order of the so-called Ehrenfest time [24], that is the time needed for the
initially localized wave packet to spread over the accessible phase space tehr = log h̄/λ where
λ is a classical Lyapunov exponent.

4.2. Wigner function value distribution

Firstly, we want to check the relaxation of the WF value statistics P(w) starting from the
initial coherent state. Using numerical experiments with the sawtooth map and the kicked top
we confirm our expectation and obtain fast relaxation into statistically significant Gaussian
distribution (14). The cascade of distributions P(w) for several consecutive kicks in the
sawtooth map is shown in figure 2. It is perhaps interesting to note that the relaxation goes
through an intermediate distribution which seems to have exponential tails (see a snapshot of the
10th kick). A very similar result is also obtained for the kicked top model shown in figure 3(a).
For comparison we show in figure 3(b) stationary WF value distributions obtained from time
evolution starting from a random state. In this case we obtain, as expected, for the initial state,
and for time-evolving states, a nice agreement with a Gaussian WF value distribution.

4.3. Relaxation time scale

Secondly, we want to quantitatively characterize the deviations from Gaussian statistics and
thus to measure the time scale of relaxation. To this end we define the excess ε of the WF
value distribution P(w)

ε = (w − W)4/σ 4 − 3. (16)

Note, that ε = 0 for a Gaussian (14) and the size of ε should roughly measure the deviation
from a Gaussian. As we have discussed above, we expect the relaxation process to take place
within the Ehrenfest time scale

tr ∼ log N/λ (17)

where λ is an effective (average) Lyapunov exponent and N is the dimensionality of Hilbert
space. This is certainly a lower bound to a relaxation time scale, but as we will show by
numerical experiments, it also gives the right scaling and order of magnitude of the true
relaxation time. For this purpose we choose only the quantized sawtooth map where much
larger N is accessible so that the logarithmic scaling can be checked.

In figure 4 we plot ε as a function of time of the WF value distribution starting from
coherent initial states, for different values of N over several orders of magnitude. Indeed
we observe a very clean transition from ε ≈ 0.65 to ε = 0 at around t ≈ log N . In order
to also check the dependence on the Lyapunov exponent λ(K0) we have plotted in figure 5
the relaxation of excess ε for several different values of chaoticity parameter K0 and fixed
N. We have found that the transition time scale is proportional to λ−1 therefore supporting
formula (17).
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Figure 1. The dynamics of the WF in the quantized sawtooth map for parameters K = 0.5, L = 1
and dimension N = 101. The system is initially in the coherent state centred at (q, p) = ( 2

3 π, 1
3 π).

The WF at successive integer time steps is shown from left to right and from top to bottom. The
colour code bar of the Wigner function values is shown at the bottom of the figure. Note the
significant contribution of negative values for longer times.

Since ε is only one number which cannot characterize the overall distribution P(w) we
have made the following additional check. We know that for a random state in the limit
N → ∞ the probability of having a negative value of the WF goes to 1/2. Therefore, we
propose to study the percentage of phase space with negative valued WF

P− =
∫ 0

−∞
P(w) dw (18)

as a function of time. The results of numerical experiment for the quantized sawtooth map are
shown in figure 6. We see that P− converges very fast to 1/2 on a time scale (tc) proportional
to log(N) but significantly (around a factor of two) smaller than the relaxation time tr. We
note that negative values of WF mean serious deviation from classical Liouville density, so
our result indicates that quantum–classical correspondence breaks significantly before the WF
value distribution becomes actually close to a Gaussian. However, both time scales have the
same scaling with N and λ.
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Figure 2. Time evolution of the Wigner function value distribution (9) of the quantized sawtooth
map for K0 = 0.5, L = 1 and N = 2187. The initial state is a coherent wave packet. Dashed
curves give a theoretical Gaussian (14).
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Figure 3. Time evolution of the Wigner function value distribution (9) of the quantized chaotic
kicked top for α = 10, γ = π/2 and J = 50. In (a) we take an initial coherent state whereas in
(b) we take an initial random state. Consecutive kicks are shown with different line styles and the
full curve is a theoretical Gaussian (14)).

4.4. Value statistics of Wigner functions of stationary eigenstates

We note that the time evolution of a Wigner function of an initial state

|ψ〉 =
∑

k

ak|ψk〉 ak ∈ C

∑
k

|ak|2 = 1 (19)
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Figure 4. Scaling of relaxation to Gaussian statistics in the quantized sawtooth map, K0 =
0.5, L = 1, measured with the excess ε of the distribution. The initial state is a coherent wave
packet. Different dimensions N are indicated in the figure.
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Figure 5. Excess ε as a function of time for the quantized sawtooth map at different kicking
strengths K0 (see figure) and at fixed dimension N = 2187 and at L = 1. The Lyapunov exponent
is given by the formula: λ(K0) = log((2 + K0 + ((2 + K0)

2 − 4)1/2)/2) [18].

can be written as

W(x, t) =
∑
kl

aka
∗
l exp(it (�k − �l))Wkl(x) Wkl(x) = C tr{ω̂(x)|ψk〉〈ψl |} (20)

in terms of the Wigner function basis Wkl if |ψk〉 are eigenfunctions of the propagator Û t with
eigenvalues exp(it�k). Therefore, stationary (or time averaged) properties of a WF W(x, t)

are determined by the diagonal functions Wkk , which are the usual WF of the eigenstates of U.
It is, therefore, clear that for classically chaotic and ergodic systems one should expect almost
all Wkk(x) to have the property of a WF of a random state. In order to confirm this conjecture
we have computed the εk of the WF value distribution of a complete set of eigenfunctions
{Wkk(x), k = 1, 2, . . .} and analysed its distribution. Indeed we found, as shown in figure 7
for the quantized kicked top, that in the classically chaotic case almost all eigenfunctions have
ε ≈ 0. This has been further quantitatively compared to random matrix theory by computing
the excess distribution for Wigner functions of eigenvectors of a Gaussian orthogonal (GOE)
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dynamics. To compare the classically chaotic case with random matrix theory, the result for GOE
random matrix eigenfunctions is given in the inset on a blown up scale.

random matrix. Indeed very nice agreement was found, meaning that also the number of
Wigner functions with larger excess (‘accidental scars’) is within the statistical fluctuation
predicted by random matrix theory. In the same figure we also analyse excess distribution
for mixed and regular classical dynamics, where the excess distribution has a nontrivial
shape.

4.5. Auto-correlation of the Wigner function

Statistical description of the WF at individual points in phase space is meaningful if statistical
correlations between Wigner function values at different phase-space points are small.
Therefore, it may be interesting to define and study the auto-correlation function of the
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Wigner function, defined as

C(δx) = 1

V

∫
W(x)W(x + δx) dx (continuous phase space)

C(δn, δm) = 1

N2

∑
nm

WnmWn+δn,m+δm (discrete phase space).

The dynamics of the auto-correlation and the corresponding Wigner function starting from
the coherent state placed at (q = 2.1, p = 1.2) of the quantized sawtooth are shown in
figure 8. At small times, when the Wigner function still has a clear non-random structure,
the auto-correlation varies strongly with the displacement vector δx = (δm, δn). From the
auto-correlation function one can clearly observe the directions of stable and unstable classical
flow. At later times C(δx) becomes isotropic, and apart from the delta spike at the origin
δx = 0, equals a constant, namely C(δx) ∼ δ(δx) + const. Indeed, for a random state we shall
proceed to determine C(δx) exactly.

We assume a random wave hypothesis,namely that a random (time-dependent) state can be
written as |ψ〉 = ∑

n cn|n〉, where cn are Gaussian random independent complex coefficients,
satisfying 〈c∗

ncm〉 = δnm, 〈cncm〉 = 0, where 〈· · ·〉 represents the average over an ensemble
of states, or equivalently, a time average with a random initial state. The auto-correlation
function can thus be expressed as

C(δn, δm) = N

N − 1
|α(δn, δm)|2 α(δn, δm) =

∑
l

exp(−i2πlδm/N)clc
∗
l+δn. (21)

Averaging over Gaussian random variables cn can be performed straightforwardly, yielding

〈C(δn, δm)〉 = N

N − 1
δδn,0δδm,0 + W

2
.

This theoretical prediction is in good agreement with numerical experiment, as shown in
figure 9. We also estimate (temporal) fluctuations of C(δx �= 0) by standard deviation
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σ 2
C = 〈C2〉 − 〈C〉2, which can be computed directly using Wick pair contractions in the

variables cn

σC = 〈C〉 = 1

N − 1
= W

2
if (δn, δm) �= 0

in the asymptotic regime of high dimension N � 1.

5. Wigner function phase-space structure statistics

In previous sections we have been investigating the value statistics of the Wigner function.
The WF possesses hills and valleys as compared to the reference ‘altitude’—offset. Here
we discuss 2D compact phase space where these structures are supported by 2D nodal cells,
that in general have very rich topology. The nodal cell sizes, especially the sub-Planck size
structures, have recently been brought in the connection with decoherence [4, 22]. We are
now interested in the statistical properties of WF phase-space structures such as the nodal cell
size and the amplitude of oscillations (hills and valleys) from a given offset value. For the
offset we choose the phase-space mean value of WF (offset = W ) as this seems to be the most
natural choice. However, since the relative mean value divided by the fluctuation goes to zero,
W/σW → 0 in the limit N → ∞, we argue that the results are asymptotically just the same
as if one considers nodal cells with respect to zero offset.

In this work we would like to obtain some general results on WF nodal cell statistics
of random (or chaotic) states. In our numerical analysis we consider time-evolving states,
starting from an initial coherent state, for times t > tE , when the statistics is stationary and
the structure of the state is expected to be the same as that of a random state.

In order to simplify the picture we have considered the statistical properties of intersections
between nodal cells (bounded by the curves W(x) − W = 0) and some arbitrary (random)
straight lines in phase space, i.e. we consider one-dimensional projections of two-dimensional
WF. Let the straight line R(t) ∈ χ be parametrized by a real variable t. In the case of spherical
phase space, the set of all straight lines consists of all great circles, while in the case of toroidal
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Figure 10. The sketch of 1D phase-space structures of the intersected WF.

phase space we consider for simplicity only closed straight lines, i.e. the two sets of irreducible
circles specified by either fixing position or fixing momentum.

The central object studied here is the so-called Wigner function on a line (abbreviated
WFL) with an offset value subtracted and assuming that the circumference of the circle is
equal to 2π :

W̃ψ,R(t) = Wψ [R(t)] − W R(t) ∈ χ t ∈ [0, 2π]. (22)

Since the statistical properties of a Wigner function of a random or ergodic quantum state are
invariant under phase-space translations, the parameters of the line (circle) R(t) can also be
chosen as random. In other words one may average over lines R(t) in a uniform way, such
that an ensemble of lines R(t) uniformly covers the phase space with respect to an ergodic
invariant measure. We shall investigate the following statistical distributions defined with
respect to Wψ,R(t): (i) distribution dP(s)/ds of spacings s = tn+1 − tn between adjacent zeros
tn of Wψ,R(t) which may also be called the ‘diameter distribution of Wigner nodal cells’, (ii)
distributions of amplitudes dP(A)/dA, i.e. local maxima (hills) and local minima (valleys)
between each pair of adjacent zeros as illustrated in figure 10 and (iii) joint distribution of
spacings s and the corresponding amplitudes A, dP(s,A)/ds dA.

5.1. Random model of a Wigner function on a line

We would like here to propose a simple statistical model which reproduces the properties of
a random Wigner function on a line. We start by a simple ansatz expanding the WFL into the
Fourier modes

W̃ (t) = u0 +
M∑

q=1

uq cos(qt) + vq sin(qt) (23)

where coefficients uq and vq are some Gaussian (asymptotically, as N → ∞, statistically
independent) random variables with zero mean 〈uq〉 = 0, 〈vq〉 = 0 and prescribed variances〈
u2

q

〉 = O(N−1),
〈
v2

q

〉 = O(N−1). The effective number of Fourier modes M is usually of the
same order as the dimension of the Hilbert space N. The ansatz (23) shall be proved separately
for the case of a WF on the torus and on the sphere, and also the expressions for the variances
of coefficients un and vn shall be computed. We will then use our statistical model to compare
with exact numerical calculations in our two model systems.

5.1.1. Random model on the torus. We expect the statistical structure of a random WF to be
the same in both the simplest sets of directions, namely for fixed position or fixed momentum.
We limit the analysis which follows to the circles of fixed position. We start from a ‘random’
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state written in the position basis {|n〉}n=1,...,N of the Hilbert space of dimension N, as

|ψ〉 =
N∑

n=0

cn|n〉 cn ∈ C (24)

with uncorrelated complex Gaussian coefficients (in the asymptotic regime N → ∞) specified
by

〈cn〉 = 0 〈c∗
mcn〉 = 1

N
〈cmcn〉 = 0. (25)

The expression for the WF (7) at some fixed position n can be rewritten in terms of continuous
momentum variable t = 2πm/N ∈ [0, 2π)

Wψ,n(t) =
M∑

q=−M

Zq(n) exp(iqt) M = (N − 1)/2. (26)

Complex Fourier expansion coefficients Zq are expressed in terms of state coefficients cn

Zq(n) = N√
N − 1

M∑
l=−M

δ̃(2l − 2n − q)cl−qc
∗
l Z∗

q(n) = Z−q(n). (27)

Now, the Fourier modes in (23) are simple bilinear functions of the coefficients cn, namely

u0 = Z0 − W uq = Zq + Z∗
q vq = i(Zq − Z∗

q) q = 1, 2 . . .M. (28)

By means of the central limit theorem one can argue in the asymptotic regime of large
N, due to summation of statistically independent terms in equation (27), that un and vn

become (independent) Gaussian variables of vanishing first moments 〈un〉 = 0, 〈vn〉 = 0.
Straightforward but tedious calculation gives for the second moments

〈uquq ′ 〉 = 〈vqvq ′ 〉 = 2

N − 1
δq,q ′ 〈vquq ′ 〉 = 0

〈
u2

0

〉 = 1

N − 1
. (29)

Therefore, the variances of Fourier coefficients are asymptotically, as N → ∞, independent
of the mode number q. This has also been verified by means of a numerical simulation of
the WFL of random states, where cn have been generated using a suitable random number
generator. The results are shown in figure 11(a) where one sees excellent agreement with the
prediction (29).
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5.1.2. Random model on the sphere. All great circles on the sphere are statistically equivalent
with respect to the WF (8) of a random state. Thus we choose to consider the equator θ = π/2
for simplicity. Using the explicit expression for the spherical harmonics Ykq

Ykq(x) = NkqP
q

k (cos(θ)) exp(iqφ) (30)

where Nkq are normalization constants and P
q

k are generalized Legendre polynomials, we
have the explicit expression for the WF on the equator

Wψ(φ) =
2J∑

q=−2J

Zq exp(iqφ) (31)

in terms of complex Fourier coefficients Zq

Zq = Cs

∑
m,m′=−J

cmc∗
m′K

q

m,m′

K
q

m,m′ =
2J∑

k=|q|
NkqP

q

k (0)〈Jm′|T †
kq |Jm〉 ∈ R.

The coefficients Zq are bilinear forms of wave coefficients cm with the Gramm matrix K
q

mm′ .
The latter is difficult to evaluate explicitly. Using the symmetry of coefficients Zq = Z∗

−q , we
rewrite the WFL as

Wψ(φ) − W = u0 +
2J∑

q=1

uq cos(qφ) + vq sin(qφ) (32)

where real Fourier coefficients are again simply related to complex coefficients Zq by (28).
The WF random model of spin J system has M = 2J modes. In the semiclassical regime
(large J ) we can again show by means of the central limit theorem that uq and vq should be
Gaussian distributed. Taking into account the detailed properties of terms in Zq we can find
the following statistical properties of uq, vq and u0:

〈uq〉 = 〈vq〉 = 〈u0〉 = 0 〈uqvq ′ 〉 = 0

〈uquq ′ 〉 = 〈vqvq ′ 〉 = σ 2
q δq,q ′ q = 1, . . . , 2J.

The standard deviations of coefficients σq are essential for further discussion, but they are
quite difficult to compute analytically. We, therefore, obtain them by numerical study of WFL
for a random state. The results of numerical simulation are shown in figure 11(b). For large
J , the results seem to be perfectly fitted by the semicircle law

σ 2
q = 2

Jπ

√
1 −

(
q − 1

2J

)2

q = 1, . . . , 2J (33)

which is conjectured to be the correct semiclassical limit.

5.2. Numerical study of the structure statistics of the Wigner function

Here we report on numerical simulations of the structure statistics of the WFL of time-
dependent states in two classically chaotic quantum systems, namely of the quantized sawtooth
map at K0 = 10 on the torus, and the quantized kicked top at α = 10, γ = π/2 on the sphere.
In addition, we simulate for comparison the corresponding statistics for the appropriate random
model discussed in the previous paragraphs, since these seem to be impossible to express
analytically.
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Figure 12. The average distribution of spacing s (I) and amplitude A (II) of the WF along a random
line in phase space: (a) discrete torus (see text for explanation), (b) continuous torus, (c) sphere.
In cases (b) and (c) the results of WFL simulations are compared with the results obtained from
simulations of the random model (RM) for the specific geometry. In all examples we consider the
case with M = 50 Fourier modes.

The results of our numerical studies of structure statistics dP/ds, dP/dA and dP/ds dA

are shown in figure 12. Numerical experiments are done so that they correspond to the WF
random model with M = 50. We can see good agreement between the random model and
the numerical measurements on real dynamical systems. The latter are performed by time
averaging over the evolution of an arbitrary initial state. We should stress that the numerical
results are identical if we instead consider the Wigner function of a random (ergodic) state.
With these results we have again shown, indirectly, that the assumptions in the derivation of the
random model are correct. In the case of a spherical phase space there is a small deviation of
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Figure 13. The average joint distribution of amplitude A and spacing s between two successive
zeros of the WFL: (a) continuous torus, (b) sphere. For more details see the caption of figure 12.
The density plot with greyness scales (indicated on the horizontal bar) refers to the simulation of
true WFL, whereas isodensity contours refer to random models as discussed in the text.

the spacing distribution dP/ds around the peak of distribution due to imperfect approximation
of the mode variances with the asymptotic semicircle formula (33).

The spacing distribution between neighbouring zeros dP/ds of the WFL (shown in
figures 12(I)) gives some information on typical intersections of the nodal cells, whereas the
amplitude distribution dP/dA (shown in figures 12(II)) gives information on the distribution
of the heights in such intersected filaments. However, we note an interesting observation,
namely that the statistics of the structure of positive nodal cells (W − W > 0) is identical
to the statistics of negative nodal cells (W − W < 0) in the asymptotic regime N → ∞.
This is consistent with an asymptotic symmetric Gaussian distribution of Wigner function
values (14). The spacing distribution exhibits periodically spaced peaks, with period π/M ,
and exponential tail with non-universal exponent for large s [23].

As the physical domain of the Wigner function on a torus is in fact a discrete mesh of N×N

points, we also consider the statistics of a proper discrete WFL, namely w̃(m) = W̃ (2πm/N),
and the discrete spacing distribution Ps which in fact measures the distribution of clusters of
points where w̃(m) has constant sign, and the corresponding amplitude distributions. These
are shown in figure 12(a). Interestingly, we find strong numerical evidence for the following
exponential distribution:

Ps = 2−s . (34)

On the other hand, this is in fact just the distribution of the lengths of clusters of repeated
uncorrelated binary events. This is consistent with the statement that the values of the WF
of a random state on a physical quantum mesh of N × N phase-space points are indeed
uncorrelated as suggested already by the auto-correlation function. We have also investigated
the joint spacing–amplitude distributions dP(s,A)/ds dA, shown in figure 13. Again the
results inferred from the simulations of the random model match the simulations of the WFL.
We found that distributions dP/ds dA have a simple shell-shaped form, indicating strong
correlations between the spacing and the amplitude of the WF intersections. In fact one
can give an upper bound on the maximally allowed amplitude A at a given small spacing
s, namely this can be estimated from the second derivative (curvature) of the random model
ansatz (23).
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6. Summary and discussion

In this paper we have proposed studying statistical properties of Wigner functions of random
pure quantum states, either eigenstates or time-dependent states of classically chaotic systems.
We concentrated on the properties of quantum maps with 2D classical phase space. We have
shown, using simple general arguments, that the Wigner function value distribution of a
random state should tend to a Gaussian, in the semiclassical limit, which is centred around
zero value, so the probabilities of having a negative or positive value become equal in the
limit. In other words, the standard deviation divided by the mean value of the Wigner function
diverges as σ/W ∼ √

N in the semiclassical limit N → ∞. In addition, we have analysed
the structure and phase-space correlations of Wigner functions of random states. In particular,
we have shown that the auto-correlation of the Wigner function becomes a delta function in
the semiclassical limit, and that the nodal cells have typical structures on the (sub-Planckian)
scale δq, δp ∼ h̄.

We believe that our results may shed some new light on the related studies of decoherence
[4, 22]. In particular, one now expects certain properties of the Wigner function of random
states to be manifestly non-classical. For example, the fidelity of two initially equivalent states
which undergo two slightly different time evolutions has been found to behave non-classically
for times larger than the −log h̄ Ehrenfest time, i.e. when the states become effectively random,
whereas the classical behaviour of fidelity has been recovered for shorter times [5]. We stress
that we have in this study only considered non-autonomous (time-dependent, e.g. kicked)
quantum systems, where Wigner functions of ergodic states are expected to occupy the entire
classical phase space. On the other hand, one may ask similar questions about the statistics of
Wigner functions on, or close to, energy surfaces of autonomous Hamiltonian systems. This
is the subject of a forthcoming publication [25].
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